SICP 問題 2.79(汎用等価述語equ?を追加。)

問題

二つの値の等価をテストする等価述語equ?を定義し、汎用算術演算パッケージに設定せよ。この演算は通常の数、有理数、及び複素数に対して働くものとする。

解答

「異なる型」の比較については現段階で考慮されていない。(だって問題2.80以降にそれについての記述があるし。)なので、ここで考えればよいのは同じ型のデータに対しての比較になる。

つーわけで、こんな感じになるか。書き加えたとこだけコメントしてます。

(define (apply-generic op . args)
  (let* ((type-tags (map type-tag args))
	 (proc (get op type-tags)))
    (if proc
	(apply proc (map contents args))
	(error
	 "No method for these types -- APPLY-GENERIC"
	 (list op type-tags)))))

(define (attach-tag type-tag contents)
  (if (eq? type-tag 'scheme-number)
      contents
      (cons type-tag contents)))

(define (type-tag datum)
  (cond ((pair? datum)
	 (car datum))
	((number? datum)
	 'scheme-number)
	(else
	 (error "Bad tagged datum -- TYPE-TAG" datum))))

(define (contents datum)
  (cond ((pair? datum)
	 (cdr datum))
	((number? datum)
	 datum)))

(define (square x)
  (* x x))

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
;汎用等価述語手続きequ?を定義する。
(define (equ? x y) (apply-generic 'equ? x y))

(define (install-scheme-number-package)
  (define (tag x)
    (attach-tag 'scheme-number x))
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (tag (+ x y))))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (tag (- x y))))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (tag (* x y))))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (tag (/ x y))))
  (put 'make 'scheme-number
       (lambda (x) (tag x)))
  ;scheme-number型の等価述語を定義して公開
  (put 'equ? '(scheme-number scheme-number)
       (lambda (x y) (eq? x y)))
  'done)
(install-scheme-number-package)

(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))


(define (install-rational-package)
  (define (gcd a b)
    (if (= b 0)
	a
	(gcd b (remainder a b))))

  (define (numer x) (car x))
  (define (denom x) (cdr x))
  (define (make-rat n d)
    (let ((g (gcd n d)))
      (cons (/ n g) (/ d g))))
  (define (add-rat x y)
    (make-rat (+ (* (numer x) (denom y))
		 (* (numer y) (denom x)))
	      (* (denom x) (denom y))))
  (define (sub-rat x y)
    (make-rat (- (* (numer x) (denom y))
		 (* (numer y) (denom x)))
	      (* (denom x) (denom y))))
  (define (mul-rat x y)
    (make-rat (* (numer x) (numer y))
	      (* (denom x) (denom y))))
  (define (div-rat x y)
    (make-rat (* (numer x) (denom y))
	      (* (denom x) (numer y))))

  (define (tag x) (attach-tag 'rational x))
  (put 'add '(rational rational)
       (lambda (x y) (tag (add-rat x y))))
  (put 'sub '(rational rational)
       (lambda (x y) (tag (sub-rat x y))))
  (put 'mul '(rational rational)
       (lambda (x y) (tag (mul-rat x y))))
  (put 'div '(rational rational)
       (lambda (x y) (tag (div-rat x y))))
  (put 'make 'rational
       (lambda (n d) (tag (make-rat n d))))
  ;rational型の等価述語を定義して公開
  (put 'equ? '(rational rational)
       (lambda (x y) (equal? x y)))
  'done)
(install-rational-package)

(define (make-rational n d)
  ((get 'make 'rational) n d))


(define (install-rectangular-package)
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)
    (sqrt (+ (square (real-part z))
	     (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (make-from-mag-ang r a)
    (cons (* r (cos a)) (* r (sin a))))

  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'make-from-real-imag 'rectangular
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'rectangular
       (lambda (r a) (tag (make-from-mag-ang r a))))
  ;rectangular型の等価述語を定義して公開
  (put 'equ? '(rectangular rectangular)
       (lambda (x y) (equal? x y)))
  'done)
(install-rectangular-package)


(define (install-polar-package)
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (* (magnitude z) (cos (angle z))))
  (define (imag-part z)
    (* (magnitude z) (sin (angle z))))
  (define (make-from-real-imag x y)
    (cons (sqrt (+ (square x) (square y)))
	  (atan y x)))

  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(polar) angle)
  (put 'make-from-real-imag 'polar
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'polar
       (lambda (r a) (tag (make-from-mag-ang r a))))
  ;polar型の等価述語を定義して公開
  (put 'equ? '(polar polar)
       (lambda (x y) (equal? x y)))
  'done)
(install-polar-package)

(define (install-complex-package)
  (define (make-from-real-imag x y)
    ((get 'make-from-real-imag 'rectangular) x y))
  (define (make-from-mag-ang r a)
    ((get 'make-from-mag-ang 'polar) r a))

  (define (add-complex z1 z2)
    (make-from-real-imag (+ (real-part z1) (real-part z2))
			 (+ (imag-part z1) (imag-part z2))))
  (define (sub-complex z1 z2)
    (make-from-real-imag (- (real-part z1) (real-part z2))
			 (- (imag-part z1) (imag-part z2))))
  (define (mul-complex z1 z2)
    (make-from-mag-ang (* (magunitude z1) (magunitude z2))
		       (+ (angle z1) (angle z2))))
  (define (div-complex z1 z2)
    (make-from-mag-ang (/ (magunitude z1) (magunitude z2))
		       (- (angle z1) (angle z2))))

  (define (real-part z)
    (apply-generic 'real-part z))
  (define (imag-part z)
    (apply-generic 'imag-part z))
  (define (magnitude z)
    (apply-generic 'magnitude z))
  (define (angle z)
    (apply-generic 'angle z))

  (define (tag z) (attach-tag 'complex z))
  (put 'add '(complex complex)
       (lambda (z1 z2) (tag (add-complex z1 z2))))
  (put 'sub '(complex complex)
       (lambda (z1 z2) (tag (sub-complex z1 z2))))
  (put 'mul '(complex complex)
       (lambda (z1 z2) (tag (mul-complex z1 z2))))
  (put 'div '(complex complex)
       (lambda (z1 z2) (tag (div-complex z1 z2))))
  (put 'make-from-real-imag 'complex
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'complex
       (lambda (r a) (tag (make-from-mag-ang r a))))
  (put 'real-part '(complex) real-part)
  (put 'imag-part '(complex) imag-part)
  (put 'magnitude '(complex) magnitude)
  (put 'angle '(complex) angle)
  ;complex型の等価述語を定義して公開
  (put 'equ? '(complex complex)
       (lambda (x y) (equal? x y)))
  'done)
(install-complex-package)

(define (make-complex-from-real-imag x y)
  ((get 'make-from-real-imag 'complex) x y))
(define (make-complex-from-mag-ang r a)
  ((get 'make-from-mag-ang 'complex) r a))

(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))

複素数の直交座標系式と極座標形式の比較はしない。なぜなら変換するとどちらかが実数になってどうせ同値にならんから。
では実験。


gosh> (equ? 2 4)
#f
gosh> (equ? 4 4)
#t
gosh> (equ? (make-scheme-number 4) (make-scheme-number 4))
#t
gosh> (equ? (make-scheme-number 4) (make-scheme-number 3))
#f
gosh> (equ? (make-rational 1 2) (make-rational 2 4))
#t
gosh> (equ? (make-complex-from-real-imag 3 4) (make-complex-from-real-imag 3 4))
#t
gosh> (equ? (make-complex-from-real-imag 3 4) (make-complex-from-real-imag 3 5))
#f
gosh> (equ? (make-complex-from-mag-ang 3 1) (make-complex-from-mag-ang 3 1))
#t
gosh> (equ? (make-complex-from-mag-ang 3 1) (make-complex-from-mag-ang 3 1.57))
#f
gosh> (equ? (make-complex-from-mag-ang 3 1.57) (make-complex-from-mag-ang 3 1.57))
#t
gosh>
い〜んじゃないでしょうか?